DNA聚合酶是什么
DNA作为遗传物质的基本特点就是能够准确地进行自我复制。在合成DNA时,决定其结构特异性的遗传信息来自其本身,必须由原来存在的DNA分子为模板来合成新的DNA分子。这种以自身DNA为模板,以脱氧核苷酸为底物催化合成新的DNA的酶称为DNA聚合酶。在微生物、植物和动物中都发现有这种酶,而且原核细胞和真核细胞所含的DNA聚合酶不只是一种。大肠杆菌中存在三种,分别称为DNA聚合酶Ⅰ、Ⅱ和Ⅲ;真核细胞中也分离出四种,分别称DNA聚合酶α、β、γ和线粒体DNA聚合酶mt。目前常用于基因工程的为大肠杆菌DNA聚合酶I和TDNA聚合酶4噬菌体感染大肠杆菌所得,而用于PCR扩增技术的多为耐热的TaqDNA聚合酶来自一种水生嗜热杆菌。
DNA连接酶与DNA聚合酶的区别
DNA连接酶与DNA聚合酶有形成方式、模板和用途三个区别:
1、形成方式不同
DNA连接酶是在两个DNA片段之间形成磷酸二酯键,不是在单个核苷酸与DNA片段之间形成磷酸二酯键。DNA连接酶都不能催化两条游离的DNA链相连接。
DNA聚合酶只能将单个核苷酸加到已有的DNA片段上,形成磷酸二酯键。dna聚合酶起到催化剂的作用,催化原来的dna进行复制,然后将原来的dna和复制以后的dna进行模板配对后,连接聚合在一起,就可以形成新的dna链。
2、模板不同
DNA连接酶不需要模板,因为DNA连接酶是将DNA双链上的两个缺口同时连接起来。用DNA连接酶连接具互补粘性末端的DNA片段或是用T4DNA连接酶直接将平末端的DNA片段连接起来。
DNA聚合酶是以一条DNA链为模板,将单个核苷酸通过磷酸二酯键形成一条与模板链互补的DNA链。DNA聚合酶的结构是三磷酸腺苷。
3、用途不同
DNA连接酶主要用于基因工程,将由限制性核酸内切酶“剪”出的粘性末端重新组合,故也称“基因针线”。如基因工程中,大肠杆菌连接酶连接黏性末端,T4连接酶既可连接黏性末端,又可连接平末端。
DNA聚合酶在DNA复制中起做用,主要是连接DNA片段与单个脱氧核苷酸之间的磷酸二酯键。
参考资料:
百度百科-DNA连接酶
百度百科-DNA聚合酶
什么是DNA聚合酶
DNA聚合酶的种类很多,它们在细胞中的DNA复制过程中起着重要的作用。DNA聚合酶有DNA聚合酶Ⅰ、Ⅱ、Ⅲ三类。基因工程中很多步骤都需要DNA聚合酶催化DNA体外合成反应,这些酶作用时大多都需要模板,合成产物的序列与模板互补。基因工程常用的DNA聚合酶有:①大肠杆菌聚合酶Ⅰ(全酶);②大肠杆菌聚合酶Ⅰ大片段(Klenow片段);③T4噬菌体DNA聚合酶;④T7噬菌体聚合酶及经修饰的T7噬菌体聚合酶(测序酶),⑤耐热DNA聚合酶(TaqDNA聚合酶);⑥末端转移酶(末端脱氧核苷酸转移酶,也属DNA聚合酶);⑦逆转录酶(依赖于RNA的DNA聚合酶)。
DNA聚合酶Ⅰ是基因工程中最常用的工具酶。DNA聚合酶Ⅱ是一条120kD的肽链,催化5′→3′方向合成DNA,也具有3′→5′外切酶活性但没有5′→3′外切酶活性。可能在当细胞DNA受到化学或物理损伤时,DNA聚合酶Ⅱ在修复过程中起特殊作用。DNA聚合酶Ⅲ全酶是一种大于250kD,由多种亚基组成的蛋白质,它是不对称的二聚体,两个亚基可分别同时催化前导链(leadingstrand)及后随链的合成。DNA聚合Ⅲ与DNA聚合酶Ⅰ相同,也具有3′→5′外切酶活性。在DNA聚合作用中,核苷酸添加的错误率达1/1000。由于DNA聚合酶Ⅰ和DNA聚合酶Ⅲ全酶的3′→5′外切酶活性,可以终止核苷酸加入并除去错误核苷酸,然后可继续加入正确的核苷酸,可将错误率减少到百万分之一或更少。
大肠杆菌DNA聚合酶Ⅰ(全酶):DNA聚合酶Ⅰ的分子量为109kD,是一条约1000个氨基酸残基的多肽链。它具有三种活性:①5′→3′DNA聚合酶活性(能以单链DNA为模板,在3′-OH引物的引导下,按5′→3′方向,合成互补的DNA序列),②3′→5′外切核酸酶活性(能够去除延长的核酸链上的3′-OH末端上的核苷酸,可以沿3′→5′方向降解双链或单DNA链DNA,释放5′-单核苷酸),③5′→3′外切核酸酶活性(能从DNA链5′-OH末端降解双螺旋DNA的一条链,沿5′→3′方向,释放出单核苷酸或寡核苷酸)。DNA聚合酶Ⅰ的主要用途:①用切口平移方法标记DNA(可作杂交探针),②利用其5′→3′外切核酸酶活性降解寡核苷酸作为合成cDNA第二链的引物,③用于对DNA分子的3′突出尾进行末端标记,用于DNA序列分析。
大肠杆菌DNA聚合酶Ⅰ大片断(KLENOW):KLENOW片断是用枯草杆菌蛋白酶裂解完整的DNA聚合酶Ⅰ产生,或通过克隆技术而获得。此酶是单一多肽链,分子量76kD。它具有5′→3′聚合酶活性和3′→5′外切酶活性,而无5′→3′外切酶活性。Klenow片段的主要用途:①补平限制性内切酶切割DNA产生的3′凹端;②用[32P]dBTP补平3′凹端,对DNA片段进行末端标记;③对带3′突出端的DNA进行末端标记;④在cDNA克隆中,用于合成cDNA第二链;⑤在体外诱变中,用于从单链模板合成双链DNA;⑥应用双脱氧链末端终止法进行DNA测序。
T4噬菌体DNA聚合酶:T4噬菌体DNA聚合酶(分子为114kD),与Klenow片断相似的是:都具有5′→3′聚合酶活性及3′→5′外切核酸酶活性。其3′→5′外切酶活性对单链DNA的作用比对双链DNA的作用更强。它的外切核酸酶活性比Klenow片段要强200倍。由于它不从单链DNA模板上置换寡核酸引物,因此在体外诱变反应中,它的效率比Klenow片段更强。它的主要用途:①补平或标记限制性内切酶消化DNA后产生的3′凹端,②对带有3′突出端的DNA分子进行末端标记;③标记用作探针的DNA片段。④将双链DNA的末端转化成为平端。⑤使结合于单链DNA模板上的诱变寡核苷酸引物得到延伸。
Ts噬菌体DNA聚合酶及由此改造的测序酶:T7噬菌体感染大肠杆菌诱生的DNA聚合酶,是两种紧密结合的蛋白质的复合体。这两种蛋白质一种是T7噬菌体基因5蛋白,另一种是宿主蛋白的硫氧还原蛋白。该酶是所有已知DNA聚合酶中持续合成能力最强的一个,它所催化合成的DNA的平均长度要比其他DNA聚合酶催化合成的DNA平均长度大得多。它的3′→5′外切核酸酶活性约为Klenow片段的1000倍。它没有5′→3′外切酶核酸酸活性。它的主要用途:①用于拷贝长段模板的引物延伸反应,②通过补平或交换(置换)反应进行快速末端标记。
T7噬菌体聚合酶中基因5蛋白中一个结构区,与大肠杆菌DNA聚合酶Ⅰ的DNA结合处及聚合结构区高度同源。这一结合及聚合结构区包含了该蛋白近羟基端的序列,而其氨其端则具有强有力的3′→5′外切核酸活性。用氧作还原剂把该酶分子与氧及二价铁离子处理可使酶3′→5′外切核酸酶活性灭活而保留其聚合酶活性。改造后的酶的持续合成能力很强,是双脱氧链终止法对长段DNA进行测序的理想用酶。后来由UnitedStatesBiochemical公司以测序酶(sequenase)作为商品名投放市场,现在已通过基因工程手段生产出一种改进的测序酶(2.0版),它完全丧失了外切核酸酶活性。
耐热DNA聚合酶(TaqDNA聚合酶):这是一种耐热的依赖DNA的DNA聚合酶(分子量65kD,原是从嗜热的水生菌Thermusaquaticus中纯化来的,现在以基因工程生产并出售(AmpliTaqTM)。这些酶具有依赖于聚合物5′→3′外切核酸酶活性。用途:①用于DNA测序,②用于聚合酶链式反应(PCR)对DNA片段进行体外扩增。
末端转移酶:从动物胸腺和骨髓中提取。此酶催化脱氧核苷酸添加到DNA分别的3′-OH末端上,催化作用不要求有模板,但需Co2+的存在。末端转移酶可作一群DNA分子的3′-OH末端接上寡dA或dC,而给另一群DNA分子的3′-OH末端接上寡dT或dG,混合这两群分子,即可使同聚物尾部退火形成环状分子。用途:①给载体或cDNA加上互补的同聚尾,②用于DNA片段3′末端的放射同位素标记。