正弦定理的证明(正弦定理的证明过程)

中国机械与配件网2340

各位老铁们,大家好,今天由我来为大家分享正弦定理的证明,以及正弦定理的证明过程的相关问题知识,希望对大家有所帮助。如果可以帮助到大家,还望关注收藏下本站,您的支持是我们最大的动力,谢谢大家了哈,下面我们开始吧!

正弦定理的证明过程

正弦定理的证明(正弦定理的证明过程)

正弦定理证明过程如下:

步骤1、在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,b/sinB=c/sinC

步骤2、证明a/sinA=b/sinB=c/sinC=2R:

如图,任意三角形ABC,作ABC的外接圆O.

作直径BD交⊙O于D.

连接DA.

因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.

所以c/sinC=c/sinD=BD=2R类似可证其余两个等式。

平面向量证法:

∵如图,有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小)

∴c·c=(a+b)·(a+b)

∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)

(以上粗体字符表示向量)

又∵Cos(π-θ)=-CosC

∴c^2=a^2+b^2-2|a||b|Cosθ(注意:这里用到了三角函数公式)

再拆开,得c^2=a^2+b^2-2*a*b*CosC

同理可证其他,而下面的CosC=(c^2-b^2-a^2)/2ab就是将CosC移到左边表示一下。

正弦定理的推导

1.三角形的正弦定理证明:

步骤1.

在锐角△abc中,设三边为a,b,c。作ch⊥ab垂足为点h

ch=a·sinb

ch=b·sina

∴a·sinb=b·sina

得到

a/sina=b/sinb

同理,在△abc中,

b/sinb=c/sinc

步骤2.

证明a/sina=b/sinb=c/sinc=2r:

如图,任意三角形abc,作abc的外接圆o.

作直径bd交⊙o于d.

连接da.

因为直径所对的圆周角是直角,所以∠dab=90度

因为同弧所对的圆周角相等,所以∠d等于∠c.

所以c/sinc=c/sind=bd=2r

a/sina=bc/sind=bd=2r

类似可证其余两个等式。

2.三角形的余弦定理证明:

平面几何证法:

在任意△abc中

做ad⊥bc.

∠c所对的边为c,∠b所对的边为b,∠a所对的边为a

则有bd=cosb*c,ad=sinb*c,dc=bc-bd=a-cosb*c

根据勾股定理可得:

ac^2=ad^2+dc^2

b^2=(sinb*c)^2+(a-cosb*c)^2

b^2=sin^2b*c^2+a^2+cos^2b*c^2-2ac*cosb

b^2=(sin^2b+cos^2b)*c^2-2ac*cosb+a^2

b^2=c^2+a^2-2ac*cosb

cosb=(c^2+a^2-b^2)/2ac

正弦定理的证明方法

一、在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H,CH=a·sinB,CH=b·sinA,∴a·sinB=b·sinA,得到a/sinA=b/sinB,同理,在△ABC中,b/sinB=c/sinC

二、证明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度。因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R。类似可证其余两个等式。

三、记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c

∴a+b+c=0,则i(a+b+c)=i·a+i·b+i·c=a·cos(180-(C-90))+b·0+c·cos(90-A)=-asinC+csinA=0接着得到正弦定理

定义:正弦定理是三角学中的一个定理。它指出了三角形三边、三个内角以及外接圆半径之间的关系。正弦定理(Sinetheorem)内容:在△ABC中,角A、B、C所对的边分别为a、b、c,则有a/sinA=b/sinB=c/sinC=2R(其中R为三角形外接圆的半径)

意义:正弦定理指出了任意三角形中三条边与对应角的正弦值之间的一个关系式。也就是任意三角形的边角关系。

扩展

余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。

余弦定理性质:对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c三角为A,B,C,则满足性质--

a^2=b^2+c^2-2·b·c·cosA

b^2=a^2+c^2-2·a·c·cosB

c^2=a^2+b^2-2·a·b·cosC

cosC=(a^2+b^2-c^2)/(2·a·b)

cosB=(a^2+c^2-b^2)/(2·a·c)

cosA=(c^2+b^2-a^2)/(2·b·c)

相关结论:

a/sinA=b/sinB=c/sinC=(a+b)/(sinA+sinB)=(a+b+c)/(sinA+sinB+sinC)

c/sinC=c/sinD=BD=2R(R为外接圆半径)

(4)设R为三角外接圆半径,公式可扩展为:a/sinA=b/sinB=c/sinC=2R,即当一内角为90°时,所对的边为外接圆的直径。灵活运用正弦定理,还需要知道它的几个变形

sinA=a/2R,sinB=b/2R,sinC=c/2R

asinB=bsinA,bsinC=csinB,asinC=csinA

(5)a=bsinA/sinBsinB=bsinA/a

正弦定理的证明的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于正弦定理的证明过程、正弦定理的证明的信息别忘了在本站进行查找哦。