余切函数图像 余切函数的余切函数的图像

中国机械与配件网3880

余切函数的图象和性质

性质:(1)、定义域:{x|x≠kπ,k∈Z}

余切函数图像 余切函数的余切函数的图像

(2)、值域:R

(3)、奇偶性:奇函数;

可由诱导公式cot(-x)=-cotx推出。

图像关于(kπ/2,0)k∈z对称,实际上所有的零点和使cotx无意义的点都是它的对称中心。

(4)、周期性;

是周期函数,周期为kπ(k∈Z且k≠0),最小正周期T=π;

(5)、单调性;

在每一个开区间(kπ,(k+1)π),k∈Z上都是减函数,在整个定义域上不具有单调性。

(6)、对称性。

中心对称:关于点(kπ/2,0)k∈Z成中心对称。

余切函数图像

余切函数的余切函数的图像

余切函数的图像如下所示:

任意角终边上除顶点外的任一点的横坐标除以该点的非零纵坐标,角的顶点与平面直角坐标系的原点重合,而该角的始边则与正x轴重合。简单点理解:直角三角形任意一锐角的邻边和对边的比,叫做该锐角的余切。

余切表示用“cot+角度”,如:30°的余切表示为cot30°;角A的余切表示为cotA。旧时用ctgA来表示余切,和cotA是一样的。假设∠A的对边为a、邻边为b,那么cotA=b/a(即邻边比对边)。

扩展资料:

余切的发展历史:

叙利亚天文学家、数学家阿尔巴坦尼(850-929)于920年左右,制成了自0到90度相隔1度的余切表。

14世纪中叶,成吉思汗的后裔,中亚细亚的阿鲁伯(1393--1449)组织了大规模的天文观测和数学用表的计算,他的正弦表精确到小数9位,他还制作了30到45度之间相隔为1",45到90度的相隔为5"7'的正切表。

英国数学家、坎特伯雷大主教布拉瓦丁(1290-1349)首先把正切、余切引入他的三角计算之中。

余切函数的图像是

cotx余切的图像如下,余切与正切互为倒数,任意角终边上除顶点外的任一点的横坐标除以该点的非零纵坐标,角的顶点与平面直角坐标系的原点重合,而该角的始边则与正x轴重合。用“cot+角度”表示。

余切函数的图象由一些隔离的分支组成。余切函数是无界函数,可取一切实数值,也是奇函数和周期函数,其最小正周期是π。

扩展资料:

余切的图像性质:

(1)定义域:余切函数的定义域是。

(2)值域:余切函数的值域是实数集R,没有最大值、最小值。

(3)周期性:余切函数是周期函数,周期是Π。

(4)奇偶性:余切函数是奇函数,它的图象关于原点对称。

(5)单调性:余切函数在每一个开区间(kΠ,(k+1)Π)(k∈Z)上都是减函数。

余切序列:“余切序列”是蝴蝶效应的一个典型例子。以下三个数列每一项都是前一项的余切,即a(n+1)=cot(an);初值分别为1、1.00001、1.0001,但是从第10项开始,三个数列开始形成巨大的分歧。这就是混沌的数列,经过足够多项后,得到的数字完全可以看作是随机的,混沌的。

参考资料来源:百度百科-余切