磷脂酰肌醇信号通路组成过程图解(磷脂酰肌醇信号通路的功能)

中国机械与配件网2620

本篇文章给大家谈谈磷脂酰肌醇信号通路组成过程图解,以及磷脂酰肌醇信号通路的功能对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

什么是肌醇磷脂,请简述其结构与合成路径?

肌醇磷脂又称磷脂酰肌醇,自大豆中提取制得。在肝脏及心肌中多是一磷酸肌醇磷脂,而在脑中多为二、三磷酸肌醇磷脂。具有极性头和非极性尾两性酯类。是细胞膜组分之一。

磷脂酰肌醇途径是G蛋白偶联受体的信号转导通路中的一种途径,在磷脂酰肌醇信号通路中胞外信号分子与细胞表面G蛋白耦联型受体结合;

激活质膜上的磷脂酶C(PLC-β),使质膜上4,5-二磷酸磷脂酰肌醇(PIP2)水解成1,4,5-三磷酸肌醇(IP3)和二酰基甘油(DG)两个第二信使,胞外信号转换为胞内信号,这一信号系统又称为“双信使系统”。

扩展资料:

抗原激活信号转导磷脂酰肌醇途径的启动钙调磷酸酶是一种丝、苏氨酸磷酸酶而不是PTK。另一方面,与胞膜内侧相联的DAG则直接激活PKC。后面熔会捍到,钙调磷酸酶和PKC主要分别活化两种重要的转录因子NF—AT和NF—cB。

因而在这一条信号转导的下游通路中,实际上再一分为二,形成钙调磷酸酶参与的途径。和PKC介导的途径。由于一个PLCγ分子可以产生很多的IP2和DAG,这就放大了传入的抗原识别信号.并保证其转导的有效性。

参考资料来源:百度百科-磷脂酰肌醇

比较camp信号通路和磷脂酰肌醇信号通路的异同

主要区别是,性质不同、过程不同、用途与作用不同,具体如下:

一、性质不同

1、cAMP信号通路

cAMP信号通路,又称PKA系统(protein kinase A system, PKA),是环核苷酸系统的一种。在这个系统中,细胞外信号与相应受体结合,通过调节细胞内第二信使cAMP的水平而引起反应的信号通路。

2、磷脂酰肌醇信号通路

磷脂酰肌醇信号通路,是信号通路中胞外信号分子与细胞表面G蛋白耦联型受体结合,激活质膜上的磷脂酶C(PLC-β),使质膜上4,5-二磷酸磷脂酰肌醇(PIP2)水解成1,4,5-三磷酸肌醇(IP3)和二酰基甘油(DG)两个第二信使,胞外信号转换为胞内信号,这一信号系统又称为“双信使系统”。

二、过程不同

1、cAMP信号通路

主要是通过cAMP激活的蛋白激酶A(protein kinase A,PKA)所介导的。无活性的PKA是由2个调节亚基(R)和2个催化亚基(C)组成的四聚体,在每个R亚基上有2个cAMP的结合位点,cAMP与R亚基结合是以协同方式发生的,即第一个cAMP的结合会降低第二个cAMP结合的解离常数,因此细胞内cAMP水平的很小的变化就能导致PKA释放C亚基并快速使激酶活化。

以cAMP为第二信使的信号通路的主要效应是通过活化cAMP依赖的PKA使下游靶蛋白磷酸化,从而影响细胞代谢和细胞行为,这是细胞快速应答胞外信号的过程。

2、磷脂酰肌醇信号通路

Ca2+活化各种Ca2+结合蛋白引起细胞反应,钙调素(calmodulin,CaM)由单一肽链构成,具有四个钙离子结合部位。结合钙离子发生构象改变,可激活钙调素依赖性激酶(CaM-Kinase)。

三、用途与作用不同

1、cAMP信号通路

通过腺苷酸环化酶活性的变化调节靶细胞内第二信使cAMP的水平,进而影响信号通路的下游事件。

2、磷脂酰肌醇信号通路

①、IP3信号的终止是通过去磷酸化形成IP2,或被磷酸化形成IP4。Ca2+由质膜上的Ca2+泵和Na+-Ca2+交换器将抽出细胞,或由内质网膜上的钙泵抽进内质网。

②、DG通过两种途径终止其信使作用:一是被DG-激酶磷酸化成为磷脂酸,进入磷脂酰肌醇循环,二是被DG酯酶水解成单酯酰甘油。由于DG代谢周期很短,不可能长期维持PKC活性,而细胞增殖或分化行为的变化又要求PKC长期活性所产生的效应。

参考资料来源:百度百科-cAMP信号通路

参考资料来源:百度百科-磷脂酰肌醇信号通路

什么是磷脂酰肌醇信号通路?

磷脂酰肌醇信号通路是细胞信号转导的的途径之一。

首先我们来了解一下什么叫信号转导。

多细胞生物是由多个细胞组成的一个有序可控的细胞社会,各细胞之间需要相互协作来完成生命活动,那自然它们之间就要进行信息“沟通”,一个信号发出细胞所发出的信息通过介质(也可以叫做配体)传递到另一个信号接收细胞,并和相应的受体相互作用,从接受到信息到引起细胞反应的整个过程就叫信号转导。

信号发出细胞发出的信号我们称为第一信使,如果这个信号不能进入细胞 那怎么把信号传递进去呢?这时候细胞在第一信使的刺激下,在细胞内产生另外一个信使,称为第二信使。在磷脂酰肌醇信号通路中,第二信使的合成原料是细胞膜上的磷脂酰肌醇,这条信号通路由此得名。

让我们来看看这条通路的具体过程:

胞外信号分子与细胞受体结合激活质膜上的磷脂酶C,磷脂酶C催化细胞膜上的磷脂酰肌醇

经过一系列化学反应最后水解为1,4,5-三磷酸肌醇 (IP3) 和二酰基甘油 (DAG) 两个第二信使,使细胞外信号转换为胞内信号。

IP3通过动员细胞内源钙到细胞质基质中,使胞质中游离Ca2+浓度升高,从而引起细胞反应;

DAG激活蛋白激酶C,活化的蛋白激酶C使底物蛋白磷酸引起细胞反应。

因为这个途径产生了两个第二信使,因此该途径又称为 “双信使系统”

磷脂酰肌醇信号通路是什么?

磷脂酰肌醇途径

是G蛋白偶联受体的信号转导通路中的一种途径,在磷脂酰肌醇信号通路中胞外信号分子与细胞表面G蛋白耦联型受体结合,激活质膜上的磷脂酶C(PLC-β),使质膜上4,5-二磷酸磷脂酰肌醇(PIP2)水解成1,4,5-三磷酸肌醇(IP3)和二酰基甘油(DG)两个第二信使,胞外信号转换为胞内信号(图8-21),这一信号系统又称为“双信使系统”(double messenger system)。

IP3与内质网上的IP3配体门钙通道结合,开启钙通道,使胞内Ca2+浓度升高。激活各类依赖钙离子的蛋白。用Ca2+载体离子霉素(ionomycin)处理细胞会产生类似的结果(图8-22)。

DG结合于质膜上,可活化与质膜结合的蛋白激酶C(Protein Kinase C,PKC)。PKC以非活性形式分布于细胞溶质中,当细胞接受刺激,产生IP3,使Ca2+浓度升高,PKC便转位到质膜内表面,被DG活化(图8-22),PKC可以使蛋白质的丝氨酸/苏氨酸残基磷酸化是不同的细胞产生不同的反应,如细胞分泌、肌肉收缩、细胞增殖和分化等。DG的作用可用佛波醇酯(phorbol ester)模拟。

Ca2+活化各种Ca2+结合蛋白引起细胞反应,钙调素(calmodulin,CaM)由单一肽链构成,具有四个钙离子结合部位。结合钙离子发生构象改变,可激活钙调素依赖性激酶(CaM-Kinase)。细胞对Ca2+的反应取决于细胞内钙结合蛋白和钙调素依赖性激酶的种类。如:在哺乳类脑神经元突触处钙调素依赖性激酶Ⅱ十分丰富,与记忆形成有关。该蛋白发生点突变的小鼠表现出明显的记忆无能。

IP3信号的终止是通过去磷酸化形成IP2,或被磷酸化形成IP4。Ca2+由质膜上的Ca2+泵和Na+-Ca2+交换器将抽出细胞,或由内质网膜上的钙泵抽进内质网

DG通过两种途径终止其信使作用:一是被DG-激酶磷酸化成为磷脂酸,进入磷脂酰肌醇循环;二是被DG酯酶水解成单酯酰甘油。由于DG代谢周期很短,不可能长期维持PKC活性,而细胞增殖或分化行为的变化又要求PKC长期活性所产生的效应。现发现另一种DG生成途径,即由磷脂酶催化质膜上的磷脂酰胆碱断裂产生的DG,用来维持PKC的长期效应。

首先由激活的SrcPrK和ZAP-70通过LAT使膜结合的磷脂酶C(PLC)分子丁链上的酪氨酸残基发生磷酸化。磷酸化的PLC—γ发挥酶活性,使底物二磷酸磷脂酰肌醇(PIP2)水解成两个成分:三磷酸肌醇(1P3)和二酰甘油(DAG)。IP3可迅速地从膜内侧向胞质溶胶中扩散,一方面打开细胞膜上的钙通道使Ca2+进入细胞内,同时开启细胞内钙池(内质网)增加Ca2+—的释放,协同提高胞内游离钙的浓度。胞质Ca2+含量的上升,激活一种称为钙调蛋白(camodulin)的Ca2+结合蛋白,后者可调节其他酶类的活性,并最终导致钙调磷酸酶的激活。

T细胞抗原激活信号转导磷脂酰肌醇途径的启动

钙调磷酸酶是一种丝、苏氨酸磷酸酶而不是PTK。另一方面,与胞膜内侧相联的DAG则直接激活PKC。后面熔会捍到,钙调磷酸酶和PKC主要分别活化两种重要的转录因子NF—AT和NF—cB。因而在这一条信号转导的下游通路中,实际上再一分为二,形成钙调磷酸酶参与的途径。和PKC介导的途径。由于一个PLCγ分子可以产生很多的IP2和DAG,这就放大了传人的抗原识别信号.并保证其转导的有效性。

磷脂酰肌醇信号通路组成过程图解的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于磷脂酰肌醇信号通路的功能、磷脂酰肌醇信号通路组成过程图解的信息别忘了在本站进行查找喔。