史上最坑爹的数学题,世上最坑爹的数学题,史上最坑爹的数学题是什么题

中国机械与配件网1160

世上最坑爹的数学题,史上最坑爹的数学题是什么题

平面几何三大难题

史上最坑爹的数学题,世上最坑爹的数学题,史上最坑爹的数学题是什么题

尺规作图的限定:平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺。用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来。有些问题看起来好像很简单,但真正做出来却很困难,这些问题之中最有名的就是所谓的三大问题。

三大几何问题

化圆为方-求作一正方形使其面积等于一已知圆;2.三等分任意角;3.倍立方-求作一立方体使其体积是一已知立方体的二倍。

详细说明

圆与正方形都是常见的几何图形,但如何作一个正方形和已知圆等面积呢?若已知圆的半径为1则其面积为π;,所以化圆为方的问题等于去求一正方形其面积为π,也就是用尺规做出长度为√π的线段(或者是π的线段)。

三大问题的第二个是三等分一个角的问题。对于某些角如90°、180°三等分并不难,但是否所有角都可以三等分呢?例如60°,若能三等分则可以做出20°的角,那么正18边形及正九边形也都可以做出来了(注:圆内接一正十八边形每一边所对的圆周角为360°/18°=20°)。其实三等分角的问题是由求作正多边形这一类问题所引起来的。

第三个问题是倍立方。埃拉托塞尼(公元前276年~公元前195年)曾经记述一个神话提到说有一个先知者得到神谕必须将立方形的祭坛的体积加倍,有人主张将每边长加倍,但我们都知道那是错误的,因为体积已经变成原来的8倍。

这些问题困扰数学家一千多年都不得其解,而实际上这三大问题都不可能用直尺圆规经有限步骤可解决的。1637年笛卡儿创建解析几何以后,许多几何问题都可以转化为代数问题来研究。而伽罗瓦的群论的创立为这一类问题提供了系统的解决方案。

1837年旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明。

1882年林得曼(Linderman)也证明了π的超越性(即π不为任何整数系数多次式的根),化圆为方的不可能性也得以确立。

虽然这三个问题已被数学家证明是不能做出的,但至今仍有大批数学爱好者在做这几个问题!

史上最坑爹的小游戏数学题第一关怎么玩

第一关:解开数学题

第一关看起来很简单,让我们解开屏幕上的数学题~看上去是1+1+1+1+1+1+1+1+1+1+1+1x0+1的简单累计,可是!这可是史上最坑爹游戏!如果按照普通的算法输入12就错啦!而实际上仔细看会发现谜题其实是1+1+1+1+11+1+1+1+11+1x0+1,所以大家应该懂了,答案是30~输入30,成功过关啦~

数学中最奇葩的定理 史上最坑爹的数学题

谁说数学是枯燥的?在数学里,有很多欢乐而又深刻的数学定理和坑爹的数学题,下面和我一起看一下吧。

数学中竟然还有这样的定理

喝醉的小鸟

定理:喝醉的酒鬼总能找到回家的路,喝醉的小鸟则可能永远也回不了家。

假设有一条水平直线,从某个位置出发,每次有50%的概率向左走1米,有50%的概率向右走1米。按照这种方式无限地随机游走下去,最终能回到出发点的概率是多少?答案是100%。在一维随机游走过程中,只要时间足够长,我们最终总能回到出发点。

现在考虑一个喝醉的酒鬼,他在街道上随机游走。假设整个城市的街道呈网格状分布,酒鬼每走到一个十字路口,都会概率均等地选择一条路(包括自己来时的那条路)继续走下去。那么他最终能够回到出发点的概率是多少呢?答案也还是100%。刚开始,这个醉鬼可能会越走越远,但最后他总能找到回家路。

不过,醉酒的小鸟就没有这么幸运了。假如一只小鸟飞行时,每次都从上、下、左、右、前、后中概率均等地选择一个方向,那么它很有可能永远也回不到出发点了。事实上,在三维网格中随机游走,最终能回到出发点的概率只有大约34%。

这个定理是著名数学家波利亚(GeorgePólya)在1921年证明的。随着维度的增加,回到出发点的概率将变得越来越低。在四维网格中随机游走,最终能回到出发点的概率是19.3%,而在八维空间中,这个概率只有7.3%。

“你在这里”

定理:把一张当地的地图平铺在地上,则总能在地图上找到一点,这个点下面的地上的点正好就是它在地图上所表示的位置。

也就是说,如果在商场的地板上画了一张整个商场的地图,那么你总能在地图上精确地作一个“你在这里”的标记。

1912年,荷兰数学家布劳威尔(LuitzenBrouwer)证明了这么一个定理:假设D是某个圆盘中的点集,f是一个从D到它自身的连续函数,则一定有一个点x,使得f(x)=x。换句话说,让一个圆盘里的所有点做连续的运动,则总有一个点可以正好回到运动之前的位置。这个定理叫做布劳威尔不动点定理(Brouwerfixedpointtheorem)。

除了上面的“地图定理”,布劳威尔不动点定理还有很多其他奇妙的推论。如果取两张大小相同的纸,把其中一张纸揉成一团之后放在另一张纸上,根据布劳威尔不动点定理,纸团上一定存在一点,它正好位于下面那张纸的同一个点的正上方。

这个定理也可以扩展到三维空间中去:当你搅拌完咖啡后,一定能在咖啡中找到一个点,它在搅拌前后的位置相同(虽然这个点在搅拌过程中可能到过别的地方)。

不能抚平的毛球

定理:你永远不能理顺椰子上的毛。

想象一个表面长满毛的球体,你能把所有的毛全部梳平,不留下任何像鸡冠一样的一撮毛或者像头发一样的旋吗?拓扑学告诉你,这是办不到的。这叫做毛球定理(hairyballtheorem),它也是由布劳威尔首先证明的。用数学语言来说就是,在一个球体表面,不可能存在连续的单位向量场。这个定理可以推广到更高维的空间:对于任意一个偶数维的球面,连续的单位向量场都是不存在的。

毛球定理在气象学上有一个有趣的应用:由于地球表面的风速和风向都是连续的,因此由毛球定理,地球上总会有一个风速为0的地方,也就是说气旋和风眼是不可避免的。

史上最奇葩的数学题

说它坑爹,是因为这史上最多人做错的8道小学数学题!

1、当水结成冰的时候,体积增加1/11,当冰化成水时,体积减少几分之几?

3、今天气温是0℃,明天预计气温会比今天冷两倍,请问明天气温是多少度?

4、一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回来了,11块钱卖给另外一个人,问他赚了多少钱?

7、已知:妈妈比小孩大21岁,六年后妈妈的年龄是小孩年龄的5倍求解:爸爸现在在那里?(真的可以计算出来啊)