各位老铁们,大家好,今天由我来为大家分享等比数列求和公式推导,以及等比数列求和公式推导 至少给出3种方法的相关问题知识,希望对大家有所帮助。如果可以帮助到大家,还望关注收藏下本站,您的支持是我们最大的动力,谢谢大家了哈,下面我们开始吧!
等比数列的求和公式怎么推导的
求和公式
求和公式推导:
(1)Sn=a1+a2+a3+...+an(公比为q)
(2)qSn=a1q+a2q+a3q+...+anq=a2+a3+a4+...+an+a(n+1)
(3)Sn-qSn=(1-q)Sn=a1-a(n+1)
(4)a(n+1)=a1qn
(5)Sn=a1(1-qn)/(1-q)(q≠1)
扩展资料
相关应用:
远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中,下一层灯数是上一层灯数的2倍,则塔的顶层共有几盏灯。
每层塔所挂的灯的数量形成一个等比数列,公比q=2,我们设塔的顶层有a1盏灯。7层塔一共挂了381盏灯,S7=381,按照等比求和公式,那么有a1乘以1-2的7次方,除以1-2,等于381.能解出a1等于3.尖头必有3盏灯。
参考资料来源:百度百科-等比数列求和公式
等比数列求和公式怎么推导的
一、等比数列求和公式推导
由等比数列定义
a2=a1*q
a3=a2*q
a(n-1)=a(n-2)*q
an=a(n-1)*q共n-1个等式两边分别相加得
a2+a3+...+an=[a1+a2+...+a(n-1)]*q
即Sn-a1=(Sn-an)*q,即(1-q)Sn=a1-an*q
当q≠1时,Sn=(a1-an*q)/(1-q)(n≥2)
当n=1时也成立.
当q=1时Sn=n*a1
所以Sn=n*a1(q=1);(a1-an*q)/(1-q)(q≠1)。
二、等比数列求和公式推导
错位相减法
Sn=a1+a2+a3+...+an
Sn*q=a1*q+a2*q+...+a(n-1)*q+an*q=a2+a3+...+an+an*q
以上两式相减得(1-q)*Sn=a1-an*q
三、等比数列求和公式推导
数学归纳法
证明:(1)当n=1时,左边=a1,右边=a1·q0=a1,等式成立;
(2)假设当n=k(k≥1,k∈N*)时,等式成立,即ak=a1qk-1;
当n=k+1时,ak+1=ak·q=a1qk=a1·q(k+1)-1;
这就是说,当n=k+1时,等式也成立;
由(1)(2)可以判断,等式对一切n∈N*都成立。
参考资料:百度百科词条--等比数列求和公式
等比数列求和公式推导 至少给出3种方法
一、等比数列求和公式推导
由等比数列定义
a2=a1*q
a3=a2*q
a(n-1)=a(n-2)*q
an=a(n-1)*q共n-1个等式两边分别相加得
a2+a3+...+an=[a1+a2+...+a(n-1)]*q
即Sn-a1=(Sn-an)*q,即(1-q)Sn=a1-an*q
当q≠1时,Sn=(a1-an*q)/(1-q)(n≥2)
当n=1时也成立.
当q=1时Sn=n*a1
所以Sn=n*a1(q=1);(a1-an*q)/(1-q)(q≠1)。
二、等比数列求和公式推导
错位相减法
Sn=a1+a2+a3+...+an
Sn*q=a1*q+a2*q+...+a(n-1)*q+an*q=a2+a3+...+an+an*q
以上两式相减得(1-q)*Sn=a1-an*q
三、等比数列求和公式推导
数学归纳法
证明:(1)当n=1时,左边=a1,右边=a1·q0=a1,等式成立;
(2)假设当n=k(k≥1,k∈N*)时,等式成立,即ak=a1qk-1;
当n=k+1时,ak+1=ak·q=a1qk=a1·q(k+1)-1;
这就是说,当n=k+1时,等式也成立;
由(1)(2)可以判断,等式对一切n∈N*都成立。
参考资料:百度百科词条--等比数列求和公式
等比数列求和公式推导的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于等比数列求和公式推导 至少给出3种方法、等比数列求和公式推导的信息别忘了在本站进行查找哦。