今天给各位分享相关系数r的计算公式的知识,其中也会对相关系数r的计算公式xi进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
求相关系数r的公式
常见的相关系数为简单相关系数,简单相关系数又称皮尔逊相关系数或者线性相关系数,其定义式为:
r值的绝对值介于0~1之间。通常来说,r越接近1,表示x与y两个量之间的相关程度就越强,反之,r越接近于0,x与y两个量之间的相关程度就越弱,一般认为:
扩展资料:
相关系数的缺点:
需要指出的是,相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关,这容易给人一种假象。
因为,当n较小时,相关系数的波动较大,对有些样本相关系数的绝对值易接近于1;当n较大时,相关系数的绝对值容易偏小。特别是当n=2时,相关系数的绝对值总为1。
因此在样本容量n较小时,我们仅凭相关系数较大就判定变量x与y之间有密切的线性关系是不妥当的。
相关系数r的计算公式是什么
相关系数r的计算公式是ρXY=Cov(X,Y)/√[D(X)]√[D(Y)]。
公式描述:公式中Cov(X,Y)为X,Y的协方差,D(X)、D(Y)分别为X、Y的方差。
若Y=a+bX,则有:
令E(X)=μ,D(X)=σ。
则E(Y)=bμ+a,D(Y)=bσ。
E(XY)=E(aX+bX)=aμ+b(σ+μ)。
Cov(X,Y)=E(XY)−E(X)E(Y)=bσ。
变量间的相互关系
⑴完全相关:两个变量之间的关系,一个变量的数量变化由另一个变量的数量变化所惟一确定,即函数关系。
⑵不完全相关:两个变量之间的关系介于不相关和完全相关之间。
⑶不相关:如果两个变量彼此的数量变化互相独立,没有关系。
线性相关系数r的计算公式是什么
相关系数定义式为:若Y=a+bX,则有令E(X)=μ,D(X)=σ,则E(Y)=bμ+a,D(Y)=bσ,E(XY)=E(aX+bX)=aμ+b(σ+μ),Cov(X,Y)=E(XY)−E(X)E(Y)=bσ。
相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。
扩展资料:
注意事项:
相关表示两变量间的相互关系,是双方向的。而回归则表示Y随X而变化,这种关系是单方向的。医学资料中的有些资料用相关表示较适宜,比如兄弟与姐妹间的身长关系、人的身长与前臂长之间的关系等资料。另有些资料用相关和回归都适宜,此时须视研究需要而定。
回归系数与相关系数的正负号都有两变量离均差积之和的符号业决定,所以同一资料的b与其r的符号相同。回归系数有单位,形式为(应变量单位/自变量单位)相关系数没有单位。相关系数的范围在-1~+1之间,而回归系数没有这种限制。
参考资料来源:百度百科-相关系数
好了,文章到此结束,希望可以帮助到大家。