负数的产生(负数的产生历史)

中国机械与配件网1310

大家好,如果您还对负数的产生不太了解,没有关系,今天就由本站为大家分享负数的产生的知识,包括负数的产生历史的问题都会给大家分析到,还望可以解决大家的问题,下面我们就开始吧!

负数是怎么产生的

负数的产生(负数的产生历史)

任何正数前加上负号都等于负数。0加上负号就不是负数!在数轴线上,负数都在0的左侧,没有最小的负数,所有的负数都比自然数小比零小(<0)的数。用负号(即相当于减号)“-”标记。例如:-1就是一个负数,读作:负1。

中国在《九章算术》《方程》章中就引入了负数(negativenumber)的概念和正负数加减法的运算法则。在某些问题中,以卖出的数目为正(因是收入),买入的数目为负(因是付款);余钱为正,不足钱为负。在关于粮谷计算中,则以加进去的为正,减掉的为负。“正”、“负”这一对术语从这时起一直沿用到现在。

负数在《方程》章中,引入的正负数加法法则称为“正负术”。正负数的乘除法则出现得比较晚,在1299年朱世杰编写的《算学启蒙》中,《明正负术》一项讲了正负数加减法法则,一共八条,比《九章算术》更加明确。在“明乘除段”中有“同名相乘为正,异名相乘为负”之句。

也就是(±a)×(±b)=+ab,(±a)×(b)=-ab,这样的正负数乘法法则,是中国最早的记载。宋末李冶还创用在算筹上加斜划表示负数,负数概念的引入是中国古代数学最杰出的创造之一。

印度人最早在中国之后提出负数,628年左右的婆罗摩笈多(约598-665)。他提出了负数的运算法则,并用小点或小圈记在数字上表示负数。在欧洲初步认识提出负数概念,最早要算意大利数学家斐波那契(1170-1250)。

他在解决一个盈利问题时说︰我将证明这个问题不可能有解,除非承认这个人可以负债。15世纪的舒开(1445-1510)和16世纪的史提非(1553)虽然他们都发现了负数,但又都把负数说成是荒谬的数,卡当(1545)给出了方程的负根,但他把它说成是“假数”。

韦达知道负数的存在,但他完全不要负数。笛卡儿部分地接受了负数,他把方程的负根叫假根,因它比“无/零”更小。

哈雷奥特(1560-1621)偶然地把负数单独地写在方程的一边,并用“-”表示它们,但他并不接受负数。邦别利(1526-1572)给出了负数的明确定义。

史提文在方程里用了正、负系数,并接受了负根。基拉德(1595-1629)把负数与正数等量齐观、并用减号“-”表示负数。总之在16、17世纪,欧洲人虽然接触了负数,但对负数的接受的进展是缓慢的。负数可以用来表示温度等各种东西。

扩展资料

人们在生活中经常会遇到各种相反意义的量。比如,在记账时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食。为了方便,人们就考虑了相反意义的数来表示。于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负。可见正负数是生产实践中产生的。

据史料记载,早在两千多年前,中国就有了正负数的概念,掌握了正负数的运算法则。人们计算的时候用一些小竹棍摆出各种数字来进行计算。比如,356摆成|||,3056摆成等等。这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作。

中国三国时期的学者刘徽在建立负数的概念上有重大贡献。刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。

刘徽第一次给出了正负区分正负数的方法。他说:“正算赤,负算黑;否则以斜正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数。

中国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”。

用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加。零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加。零加正数等于正数,零加负数等于负数。”

参考资料:负数的百度百科

负数是怎样产生的我国负数最早出现在什么时代

1、产生

负数也是在生产实践中产生的。人们在生活中经常会遇到各种相反意义的量。比如,在记帐时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食。为了方便,人们就考虑了相反意义的数来表示。于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负。

我国三国时期的学者刘徽在建立负数的概念上有重大贡献。刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。

我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。”

这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”。

用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加。零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加。零加正数等于正数,零加负数等于负数。”

2、我国负数最早出现时期

史料记载,我国在战国时期就认识到了负数。如李悝(约前455-395)在《法经》中写道,“衣五人终岁用千五百不足四百五十”。

而在甘肃居延出土的汉简中,有“相除以负百二十四算”、“负二千二百四十五算”、“负四算,得七算,相除得三算”等类似叙述,这里把“负”与“得”相比,意为缺少、亏空,就是今天负数的雏形。

我国是最早使用负数的国家,西汉(公元前二世纪)时期,我国就开始使用负数。《九章算术》中已经给出正负数运算法则,人们在计算时就用两种颜色的算筹分别表示正数和负数,而用空位表示“0”,只是没有专门给出0的符号,“0”这个符号,最早在公元五世纪由印度人使用。

扩展资料

负数虽然通过阿拉伯人的著作传到了欧洲,但16世纪和17世纪的大多数数学家并不承认它们是数,或者即使承认了也并不认为它们是方程的根。

负数是人类第一次越过正数域的范围,前此种种的经验,在负数面前全然无用。在数系发展的历史进程中,现实经验有时不仅无用,反而会成为一种阻碍。我们将会看到,负数并不是惟一的例子。

印度最早使用负数者是婆罗摩笈多(Brahmagupta,598-665),其在628年完成的《婆罗摩修正体系》第18章中给出了正负数的四则运算法则,他认为负数就是负债和损失,并用小点或小圈标在数字上面表示负数。

和当时印度数学家一样,婆罗摩笈多将文字编排成椭圆形句子,而且最后会有一个环状排列的诗,让人读起来感觉很美妙。

古巴比伦人在解方程中未提出负根概念,即不用或未发现负数根。西方首先使用负数者应是古希腊的丢番图(Diophantus,约246-330),尽管他不承认方程的负根,但已认识到“减数乘减数得加数,加数乘减数得减数”。若在解方程中出现负根,他就放弃此根。

参考资料来源:百度百科-负数

负数的产生是怎样的

今天人们都能用正负数来表示相反方向的两种量。例如以海平面为0点,世界上最高的珠穆朗玛峰的高度为+8844.43米,最深的马里亚纳海沟深为-10911米。在日常生活中,则用“+”表示收入,“-”表示支出。在历史上,负数的引入经历了漫长而曲折的历程。

古代人在实践活动中遇到了一些问题,如相互间借用东西,对借入和借出双方来说,同一样东西具有不同的意义。分配物品时,有时暂时不够,就要欠一定的数量。再如从一个地方,两个人同时向两个方向行走,离开出发点的距离即使相同,但两者又有不同的意义。久而久之,古代人意识仅用数量表示一事物是不全面的,似乎还应加上表示方向的符号。为了表示具有相反方向的量和解决被减数大于减数等问题,逐渐产生了负数。

中国是世界上最早认识和应用负数的国家。早在2000年前的《九章算术》中,就有了以卖出粮食的数目为正(可收钱),买入粮食的数目为负(要付钱),以入仓为正,出仓为负的思想。这些思想,西方要迟于中国八九百年才出现。

OK,关于负数的产生和负数的产生历史的内容到此结束了,希望对大家有所帮助。