老铁们,大家好,相信还有很多朋友对于函数的定义域和函数的定义域例题的相关问题不太懂,没关系,今天就由我来为大家分享分享函数的定义域以及函数的定义域例题的问题,文章篇幅可能偏长,希望可以帮助到大家,下面一起来看看吧!
请问函数的定义域是什么
函数的定义域就是使函数有意义的自变量的取值集合
1,对于函数是整式结构,没有特殊说明,定义域为R
例:y=X^2+3X-5,定义域为R
2,分式结构,分母不为零
例:y=(3x+5)/(x^2-1)
函数要有意义则x^2-1≠0∴x≠±1
∴定义域为{x|x∈R,且x≠±1}
3,开偶次方根被开方数大于等于0
例:y=√(x^2-x-2)
函数要有意义则x^2-x-2≥0∴x≥2或x≤-1
∴定义域为{x|x≥2或x≤-1}
再来个综合的
例:y==[√(x^2-x-2)]/(x^2-1)
函数要有意义则x^2-x-2≥0①x^2-1≠0②
∴定义域为{x|x≥2或x<-1}(对两个不等式求交集)
4,对数函数要注意真数大于0,底数大于0且不等到于1这些都是有意义的条件
例:y=log2(x^2-x-2)(x^2-x-2是真数,2是底数)
函数要有意义则x^2-x-2>0
所以定义域为{x|x>2或x<-1}
若底数含有自变量则底数大于0且不等到于1
5,若是指数为0函数,底数不能为0
例;y=(2x-1)^0
则定义域为{x|x≠1/2}
总之定义域是函数有意义的自变的范围,若是实际应用题还要符合实际意义.
函数的定义域怎么表示
函数的定义域表示方法有不等式、区间、集合等三种方法。
例如:y=√(1-x)的定义域可表示为:1)x≤1;2)x∈(-∞,1];3){x|x≤1}。
定义域
(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域。
扩展资料:
函数值域
值域定义
函数中,因变量的取值范围叫做函数的值域,在数学中是函数在定义域中应变量所有值的集合
常用的求值域的方法
(1)化归法;
(2)图象法(数形结合)
(3)函数单调性法,
(4)配方法;
(5)换元法;
(6)反函数法(逆求法);
(7)判别式法;
(8)复合函数法;
(9)三角代换法;
(10)基本不等式法等。
函数的定义域是什么
函数的定义域就是使函数有意义的自变量的取值集合
1,对于函数是整式结构,没有特殊说明,定义域为R
例:y=X^2+3X-5,定义域为R
2,分式结构,分母不为零
例:y=(3x+5)/(x^2-1)
函数要有意义则x^2-1≠0∴x≠±1
∴定义域为{x|x∈R,且x≠±1}
3,开偶次方根被开方数大于等于0
例:y=√(x^2-x-2)
函数要有意义则x^2-x-2≥0∴x≥2或x≤-1
∴定义域为{x|x≥2或x≤-1}
再来个综合的
例:y==[√(x^2-x-2)]/(x^2-1)
函数要有意义则x^2-x-2≥0①x^2-1≠0②
∴定义域为{x|x≥2或x<-1}(对两个不等式求交集)
4,对数函数要注意真数大于0,底数大于0且不等到于1这些都是有意义的条件
例:y=log2(x^2-x-2)(x^2-x-2是真数,2是底数)
函数要有意义则x^2-x-2>0
所以定义域为{x|x>2或x<-1}
若底数含有自变量则底数大于0且不等到于1
5,若是指数为0函数,底数不能为0
例;y=(2x-1)^0
则定义域为{x|x≠1/2}
总之定义域是函数有意义的自变的范围,若是实际应用题还要符合实际意义.
文章到此结束,如果本次分享的函数的定义域和函数的定义域例题的问题解决了您的问题,那么我们由衷的感到高兴!