面面垂直的判定 面面垂直的判定定理

中国机械与配件网4330

各位老铁们好,相信很多人对面面垂直的判定都不是特别的了解,因此呢,今天就来为大家分享下关于面面垂直的判定以及面面垂直的判定定理的问题知识,还望可以帮助大家,解决大家的一些困惑,下面一起来看看吧!

面面垂直的性质定理和判定定理

面面垂直的判定 面面垂直的判定定理

关于面面垂直的性质定理和判定定理如下:

面面垂直。判定定理:经过一个平面的垂线的平面与该平面垂直。性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。

一个平面过另一平面的垂线,则这两个平面相互垂直。几何描述:若a⊥β,a⊂α,则α⊥β证明:任意两个平面关系为相交或平行,设a⊥β,垂足为P,那么P∈β

∵a⊂α,P∈a∴P∈α即α和β有公共点P,因此α与β相交。设α∩β=b,∵P是α和β的公共点∴P∈b过P在β内作c⊥b∵b⊂β,a⊥β∴a⊥b,垂足为P又c⊥b,垂足为P

∴∠aPc是二面角α-b-β的平面角∵c⊂β∴a⊥c,即∠aPc=90°根据面面垂直的定义,α⊥β如果一个平面的垂线平行于另一个平面,那么这两个平面互相垂直。

已知α⊥a,a∥β,求证α⊥β证明:过a任意作一个平面γ与β相交,设交线为c∵a∥β∴a∥c(线面平行的性质定理)∵a⊥α∴c⊥α(线面垂直的性质定理)∵c⊂β∴β⊥α(定理1)

如果两个平面的垂线互相垂直,那么这两个平面互相垂直。(可理解为法向量垂直的平面互相垂直)证明:设有a⊥α,b⊥β,且a⊥b则根据线面平行的判定定理,有a∥β

∵a⊥α∴α⊥β(推论1)这些定理和推论都是向量法解题的基础,例如向量法解得一个平面的法向量与另一个平面平行,那么这两个平面就垂直。性质定理

定理1如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。已知:α⊥β,α∩β=l,O∈l,OP⊥l,OP⊂α。求证:OP⊥β。

证明:过O在β内作OQ⊥l,则由二面角知识可知∠POQ是二面角α-l-β的平面角。∵α⊥β∴∠POQ=90°,即OP⊥OQ∵OP⊥l,l∩OQ=O,l⊂β,OQ⊂β∴OP⊥β

面面垂直的判定定理是什么

共三个定理:

1、在一个平面内做2条相交直线,另一个zhi平面内有一条直线垂直于这两条相交直线,则面面垂直。

2、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。面面垂直。

3、如果一个平面经过另一平面的垂线,则这两个平面相互垂直。

扩展资料

一个平面过另一平面的垂线,则这两个平面相互垂直。

几何描述:若a⊥β,a⊂α,则α⊥β

证明:任意两个平面关系为相交或平行,设a⊥β,垂足为P,那么P∈β

∵a⊂α,P∈a

∴P∈α

即α和β有公共点P,因此α与β相交。

设α∩β=b,∵P是α和β的公共点

∴P∈b

过P在β内作c⊥b

∵b⊂β,a⊥β

∴a⊥b,垂足为P

又c⊥b,垂足为P

∴∠aPc是二面角α-b-β的平面角

∵c⊂β

∴a⊥c,即∠aPc=90°

根据面面垂直的定义,α⊥β

证明面面垂直的判定定理

判定定理:一个面如果过另外一个面的垂线,那么这两个面相互垂直。即一个平面过另一平面的垂线,则这两个平面相互垂直。

面面垂直的性质定理

在一个面中做一条垂直于两面交线的直线,则这条直线垂直于另一个面。

面面垂直的判定的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于面面垂直的判定定理、面面垂直的判定的信息别忘了在本站进行查找哦。