这篇文章给大家聊聊关于瞬时速度定义,以及什么是瞬时速度,怎么算对应的知识点,希望对各位有所帮助,不要忘了收藏本站哦。
大学物理书上关于瞬时速度的定义是这样的,
dr/dt是一个整体记号,表示微商。不能分离开考虑。dt是关于时间的微量。dr/dt表示位移对时间的导数,表示瞬时速度。这个式子的含义考虑了极限,具体高等数学书上有说明。
什么是瞬时速度,怎么算
瞬时速度表示物体在某一时刻或经过某一位置时的速度,该时刻相邻的无限短时间内的位移与通过这段位移所用时间的比值v=△x╱△t。瞬时速度是矢量,既有大小又有方向。
计算方法:
1、在匀变速直线运动中,中间位移瞬时速度应为
2、普通运动:只能求出估计值。向左右两边各延伸一段趋于0的时间△x/△t即可。
3、匀速运动:平均速度即是瞬时速度。匀速直线运动的速度即为平均速度。
扩展资料
瞬时速度简称速度(通常说的速度是指平均速度),但是在解题、学术方面碰到“速度”一词,如果没有特别说明均指瞬时速度。理论上来说,瞬时速度只是一个估计值,精确计算的时间应无限接近于0,但不为0。
方向:瞬时速度的方向,即该点在轨迹上运动的切线方向。
瞬时速度和平均速度:在匀变速直线运动中,物体运动的平均速度等于中间时刻的瞬时速度。
瞬时速率和瞬时速度:
1、瞬时速度是矢量,既有大小又有方向;
2、而瞬时速率是标量,只有大小没有方向;
3、瞬时速度的大小是瞬时速率。
参考资料来源:百度百科-瞬时速度
瞬时速度的定义
瞬时速度:
也就是当二点很接近时(△t→0),算出来的平均速度称为『瞬时速度』。
----------------------------------------------------------------------------------------------------------
运动物体在某一时刻或某一位置时的速度,叫做瞬时速度(简称速度)。通常把瞬时速度的大小又称为速率。瞬时速度是矢量[1],某一时刻(或经某一位置时)瞬时速度的方向,即是这一时刻(或经过一位置时)物体运动的方向。
瞬时速度可能不太容易理解
Δt→0表示一小段时间,趋近于0(用箭头表示)
也就是说,如果要求t0是的瞬时速度,那么这个瞬时速度就是v=ΔS/Δt,Δt越小,这个v也就更接近真正的瞬时速度,这也就是为什么Δt要趋近于零,实际上就是个极限。
你可以理解为一辆汽车在马路上行驶,顺时速度就是速度表上的实数。这就足够了,但建议你了解一下本质,往下看。
这样可能更好理解:
现在用函数的思想来说明这个问题,设一个函数,自变量为t,位移的大小为函数,那么这个函数表示为S=f(t),如果这是一个正比例函数(S=vt),也就是说对应一个匀速直线运动,那么,对于任意时刻,瞬时速度就是这个函数的斜率。
那么如果f(t)是个曲线,t0时的瞬时速度就是过(t0,f(t0))点图像的一条切线的斜率(这可以由瞬时速度的定义得,但你没学过极限,所以就不要求你证明了,后面我在写一个比较好理解极限的)。为什么呢?
在t0右边取一点t0+Δt(Δt→0你就理解为Δt很小就行了),那么这个函数在(t0,f(t0))与(t0+Δt,f(t0+Δt))之间这一段很短,就可以理解成是一条直线(严格证明也是极限的内容,你就直观的理解一下就行了),那么在这一段上,就可以认为是匀速直线运动,那么在时间间隔t0~t0+Δt上,平均速度就十分接近t₀点的瞬时速度v₀,并且Δt越小,越接近。如果说本质的话,瞬时速度就是,很短时间内的平均速度的极限。(也就是说,时间越短,平均速度就越接近瞬时速度)
现在我们回归物力,在一个运动上,取一小段时间Δt,则在这段时间上,加速度可以忽略(极限问题),这样我们把它近似为一个匀速运动,然后瞬时速度就是极短时间内的平均苏度。
当然,一般情况下,这种极限思想是不会再做题中遇到的,这只是一个定义,顺时速的就是物体在某一时刻机械运动的一个参量,或者一个属于刻机械运范畴的属性,表示这一时刻物体的快慢。
一般球瞬时速度求偶是有公式的,比如匀速直线运中,匀加速直线运动,匀速圆周运动,当然还有一个方面就是能量守恒,顺便说一下,引入能量守恒后,顺时速度的大小还可适用动能的大小来量度,就是说,顺时速度代表着这个物体的动能。当然这些你在看到机械能的时候就理解了。
瞬时速度定义的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于什么是瞬时速度,怎么算、瞬时速度定义的信息别忘了在本站进行查找哦。