四边形的内角和是多少
四边形内角和等于360°。
n边型的内角和公式为(n-2)×180°,所以四边形内角和为(4-2)×180°=2×180°=360°。由不在同一直线上的四条线段依次首尾相接围成的封闭的平面图形或立体图形叫四边形,由凸四边形和凹四边形组成。
平行四边形性质:
(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补。
(4)夹在两条平行线间的平行线段相等。
(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
四边形的内角和是多少度
四边形内角和等于360°。
n边型的内角和为(n-2)×180°,所以四边形内角和为(4-2)×180°=2×180°=360°。
1、四边形的特点:有四条直的边;有四个角。
2、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
3、正方形的特点:有4个直角,4条边相等。
4、长方形和正方形是特殊的平行四边形。
5、平行四边形的特点:对边相等、对角相等。
扩展资料
四边形分为凸面四边形和凹面四边形。
1、凸四边形包括平行四边形(包括:普通平行四边形,矩形,菱形,正方形)和梯形(包括:普通梯形,直角梯形,等腰梯形)。
凸四边形的内角和和外角和均为360度。
2、凹四边形包括,矩形、菱形、正方形等。
若原四边形的对角线垂直,则中点四边形为矩形;若原四边形的对角线相等,则中点四边形为菱形;若原四边形的对角线既垂直又相等,则中点四边形为正方形。
四边形的内角和怎么求
由于三角形的内角之和等于180度,那么,连接四边形的对角,这条对角线把四边形分成了两个三角形,所以,四边形的四个内角之和等于两个三角形的内角和,即360度。