所有四边形的内角和是多少度(所有四边形的内角和是不是都是360度)

中国机械与配件网3920

今天给各位分享所有四边形的内角和是多少度的知识,其中也会对所有四边形的内角和是不是都是360度进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

四边形的内角和等于多少度

四边形内角和等于360°。

n边型的内角和为(n-2)×180°,所以四边形内角和为(4-2)×180°=2×180°=360°。

1、四边形的特点:有四条直的边;有四个角。

2、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

3、正方形的特点:有4个直角,4条边相等。

4、长方形和正方形是特殊的平行四边形。

5、平行四边形的特点:对边相等、对角相等。

扩展资料

多边形内角和定理证明

证法一:在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形.

因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360°

所以n边形的内角和是n·180°-2×180°=(n-2)·180°.(n为边数)

即n边形的内角和等于(n-2)×180°.(n为边数)

证法二:连结多边形的任一顶点A1与其不相邻的各个顶点的线段,把n边形分成(n-2)个三角形.

因为这(n-2)个三角形的内角和都等于(n-2)·180°(n为边数)

所以n边形的内角和是(n-2)×180°.

参考资料来源:百度百科-四边形

任何一个四边形的四个内角的度数和是多少

平行四边形的四个内角的度数和为360度。平行四边形相邻两个角互为补角(180度),对角相等。

注:矩形、菱形、正方形都是特殊的平行四边形。

平行四边形性质:

(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。

(简述为“平行四边形的两组对边分别相等”

(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。

(简述为“平行四边形的两组对角分别相等”

(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补。

(简述为“平行四边形的邻角互补”)

(4)夹在两条平行线间的平行的高相等。(简述为“平行线间的高距离处处相等”)

(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。

(简述为“平行四边形的对角线互相平分”)

(6)连接任意四边形各边的中点所得图形是平行四边形。(推论)

(7)平行四边形的面积等于底和高的积。(可视为矩形。)

(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。

(9)平行四边形是中心对称图形,对称中心是两对角线的交点.

(10)平行四边形不是轴对称图形,但平行四边形是中心对称图形。矩形和菱形是轴对称图形。注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。

(11)平行四边形abcd中(如图)e为ab的中点,则ac和de互相三等分,一般地,若e为ab上靠近a的n等分点,则ac和de互相(n+1)等分。

(12)平行四边形abcd中,ac、bd是平行四边形abcd的对角线,则各四边的平方和等于对角线的平方和。

(13)平行四边形对角线把平行四边形面积分成四等份。

(14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。

四边形内角和是多少度呢

四边形内角和是多少度呢呢,还有同学记得吗,不清楚的话,快来我这里瞧瞧。下面是由我为大家整理的“四边形内角和是多少度呢”,仅供参考,欢迎大家阅读。

四边形内角和是多少度呢

四边形的内角和等于三百六十度. 由不在同一直线上的不交叉的四条线段依次首尾相接围成的封闭的平面图形或立体图形叫四边形,由凸四边形和凹四边形组成。

四边形内角和等于三百六十度。

n边型的内角和为(n-2)×180°,所以四边形内角和为(4-2)×180°=2×180°=3,60°。

1、四边形的特点:有四条直的边;有四个角。

2、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

3、正方形的特点:有4个直角,4条边相等。

4、长方形和正方形是特殊的平行四边形。

5、平行四边形的特点:对边相等、对角相等。

多边形内角和定理证明

证法一:在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形.

因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是3,60°

所以n边形的内角和是n·180°-2×180°=(n-2)·180°.(n为边数)

即n边形的内角和等于(n-2)×180°.(n为边数)

证法二:连结多边形的任一顶点A1与其不相邻的各个顶点的线段,把n边形分成(n-2)个三角形.

因为这(n-2)个三角形的内角和都等于(n-2)·180°(n为边数)

所以n边形的内角和是(n-2)×180°8。

拓展阅读:不等边梯形的面积怎么算

不等边梯形的面积的算法:

1、上底加下底的和乘以高除以二;

2、中位线乘以高;

3、中位线:连接梯形两腰中点的线段叫做梯形的中位线。

高考数学复习攻略有哪些

一、要“做题”,“做存题”

在后面阶段中,主要解决两个问题:一个是扎实学科基础,另一个则是弥补自己的薄弱环节。

考生在复习的中后期阶段,一定要对自己有一个比较清晰的认识,只有对自己的认识清晰准确,才能够对自己薄弱的环节或者知识点进行有针对性的学习与训练!

要解决这两个问题,就是要“做题”“做存题”。所谓的“存题”,就是现有的、以前做过的题目。同学们可以重新翻看这些资料,或者可以查看自己的错题集,从自己的失误中,找到得分点,找到自己的提升空间。把过去的知识点进行重新梳理和“温故”。

二、错题重做

要重拾做错的题,特别是大型考试中出错的题,对于一些模拟考试,考生一定要注意!因为模拟考试是与高考最接近的一次考试。这次模拟考试的成绩和分数在很大程度上会影响考生的自我定位。对于一些自我认识不够的考生,可以参考模拟考的考试成绩,和考试的失分情况,进行适当的训练。分析出错的原因,从出错的根源上解决问题。结合考纲考点,采取对账的方式,做到点点过关,单元过关。

三、适当“读题”

读题的任务就是要理清解题思路,明确解题步骤,分析最佳解题切入点。

读题强调解读结合,边“解”边“读”,以“解”为主。考生需要注意解题的思路和解题的方式,有些题目不止一种解题方式。考生需要做的就是充分了解,并且掌握解题的方式。你掌握的解题方式和思路越多,考试遇到题目就越是能够有效应对!

四、基础训练

到了冲刺阶段,训练应以客观题和解答题为主。其训练内容应包括以下方面:基础知识和基本运算;解选择题、填空题的策略。

考生越到复习后期,越是要注意基础题。因为在高考中,基础题的分数值累计起来还是很多的。考生若是感觉提高有难度,可以从基础题开始巩固。从基础的训练中巩固已经掌握的知识点内容,基础掌握的越扎实,考试发挥也就越稳定。基础扎实了,后期想要提高,也是比较容易的。有不少的考生,基础还没有打扎实,就想着提高;这只会难上加难!

四边形内角和是多少度

四边形内角和是多少度?对这个知识点有疑问的朋友赶紧来本文学习一下,下面我为你准备了“四边形内角和是多少度”内容,仅供参考,祝大家在本站阅读愉快!

四边形内角和是多少度

四边形内角和等于三百六十度。

n边型的内角和为(n-2)×180°,所以四边形内角和为(4-2)×180°=2×180°=3,60°。

1、四边形的特点:有四条直的边;有四个角。

2、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

3、正方形的特点:有4个直角,4条边相等。

4、长方形和正方形是特殊的平行四边形。

5、平行四边形的特点:对边相等、对角相等。

拓展阅读:六边形内角和怎么算

一个三角形的内角之和是180度,每加一条边即增加一个三角形,即N边形内角和为(N-2)*180度,所以六边形的内角和等于720度。

六边形内角和

六边形,是多边形的一种,指所有有六条边和六个角的多边形。根据正多边形内角和公式S=180°·(n-2),所有的正六边形的内角和都是720°,外角和为360°。

如果六边形中有至少一个优角,我们就说该六边形是凹六边形。如果六边形中六个角都是劣角,那么这样的六边形就是凸六边形。

四边形的内角和是多少度?

四边形内角和等于360°。

n边型的内角和公式为(n-2)×180°,所以四边形内角和为(4-2)×180°=2×180°=360°。由不在同一直线上的四条线段依次首尾相接围成的封闭的平面图形或立体图形叫四边形,由凸四边形和凹四边形组成。

多边形内角和的计算公式为(n-2)×180,其中n为多边形的边数,此公式适用所有的平面多边形,包括凸多边形和平面凹多边形。五边形有五条边,所以根据公式可得五边形内角和为(5-2)×180=540°。

性质:

已知一个多边形边数,那么它的内角和等=(边数-2)×180°。

已知一个多边形的内角和,那么它的边数=(内角和÷180°)+2。

正五边形的五条边相等,五个内角相等,都是108°。

正五边形的五条对角线都相等。

正五边形是轴对称图形,共有5条对称轴。

正五边形的每个外角和每个中心角都是72°。

所有四边形的内角和是多少度的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于所有四边形的内角和是不是都是360度、所有四边形的内角和是多少度的信息别忘了在本站进行查找喔。